And you thought Fridays couldn’t get any better!

 

★ Small pig farmers just got scammed out of 60 million dollars.

North Dakota is running anti-Iran deal ads. North Dakota is also in an oil boom. Coincidence- you better believe not.

★ Tech has made constant communication between kids and parents a nightmare for teachers.

★ Your mamma was right about showers and rainstorms.

Map those potholes, Google! Gotta make it easier for the automated cars to adjust!

★ Scammy much? H&R Block.

So, what’s the big deal?

Syria isn’t getting help from it’s rich neighbors. Could it be because they’re funding the insurgence?

Jobs! Jobs! Jobs! Unemployment down! Drops mic.

★ How dare Marissa Mayer provide for her children?!

★ B.I.A.S. brought to you by Uber.

★ We’ve officially failed the children on Syria.

★ Me, as a mother.

★ Jeb Bush wants to remind you that it’s Asians that are anchors. Cue the stupid drum.

★ Look for more paywalls as Apple jumps on adblocker for Safari.

Love wins and Satan jailed. There’s your corrected headline. Praise Jesus.

★ The pedestrian fight happening in Times Square.

★ Tiny bonita casa.

 
 

 
 

★ Sony’s new beta phase drone.

 
 

★ Women directors talk climbing mountains.

 
 

★ The History of Labor Day.

 
 

★ Grab some popcorn for college football’s first filmed footage. Yale versus Princeton.

 
 

★ Followed by college football 2015 style.

 
 

U. Already. Know.

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

 
 

We’ve developed a new framework for reinforcement learning, a subset of machine learning. This video shows the framework applied to an autonomous RC car that learns to drift around a truck.

via Hal

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

19.59

Opening in New Zealand at 6pm EST.

 photo 34er_zpsqjgj9z1x.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

17.40

Making estimates on the volatility of volatility proves volatile.

 photo 221552123._zpsyuu9xkzi.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

17.37

The delay in the China rate cut looks likely to take affect in a few hours when New Zealand open at 6pm EST.

 photo hfghf3rt_zpsgx3t4ac2.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

16.05

And green bleeds.

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

12.38

Argentina’s oil is 77 a barrel for a specific reason.


[click on picture for article]

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

12.34

China cute rates to help it’s market. Better option than banning trades.

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

12.05

What do you do when oil is selling for low and you have sanctions? Blame the principle for detention.

[click on either picture for article]

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

09.41

Crude oil production. Saudi Arabia’s entire economy is based on oil.

 photo tret435453_zpswnwhwrxq.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

09.39

 photo 23154654454_zpsx4ry9rqd.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

09.32

Monday Aug. 25 heat map.

 photo cgert34_zpswicfsmpr.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

09.11

On Bloomberg, “We call JP Morgan the Lebron James of banking. Good on offense and defense.”

I bank with Pat Riley who specializes in futures.

 photo fdgdfg345345_zpsvd1rge0a.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

08.46

Monday 6:00pm EST 100. 8:24am EST Tuesday up 511.

 photo 45654ew534_zpsot7sw1dz.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

08.43

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

01.46

Up in increments only. No real growth.

 photo ter545343_zpsptfrwibv.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

01.14

Here is when China’s problems started Dec 22, 2014.


[click on picture for article]

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

01.09

What happens when China doesn’t buy your minerals?

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

00.53

US blames China and China blames US. Who is right? Both. remember US in that oil over-pumping fight. Too much oil equals cheap oil. China isn’t buying copper or iron ore and other commodities.

 photo dfy5_zpst1penj02.jpg

 photo fdg43543ds_zpsl9o7vr08.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

00.39

Hardest hit Malaysia and Indonesia dawn a new day.

 photo bngv54_zps5glh3h3v.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

00.25

More of a Java crash. As long as US and Saudi Arabia keep overproducing oil this can happen again. US hedges run out at end this year.

[click on picture for article]

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.48

The one number you want to see positive is MSCI emerging markets wich measures multiple indexes.

 photo 1321654_zpsf3uq1l5w.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.44

But it’s not just China. US shale producers and OPEC have an oil pumping competition going on.

 photo 1321654_zpsf3uq1l5w.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.43

Relax with word “crisis”.

 photo fg54fg_zpsmslnifc1.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.42

At 10:22 EST, Futures tripled from 6pm mark. Up at 377.

 photo 445cc_zpsgtgtdfco.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.40

10 year bond all where all strong on black Monday same showing on Tuesday.

 photo 1354545mm_zpsv7hyjnau.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.36

The stocks that were sold off yesterday became today’s buys.

 photo jkhuih76_zpswu2if5an.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.35

At 9:30pm EST, futures continued to climb positive.

 photo 216546532_zpshibwli9w.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.32

And then came China with better news.

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.30

Not too horrible upon opening. No sell off at Monday’s rates.

 photo 213213ff_zpspflr3ozr.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

23.29

At just past 6pm EST, New Zealand markets opened- and the futures started going green.

 photo 2132135_zpsfmztfabv.jpg

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit
Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

LiveStream: Hugo Awards 2015

August 23rd, 2015 | Posted by Sarah in PureNerdism - (0 Comments)



Broadcast live streaming video on Ustream

 
 

“What are you looking at? Are you looking at my bumps, David?” A dalek.

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

 
 

The better we come to understand the way intelligence develops in complex systems in the universe, the more clearly we’ll perceive our own role and limits in fostering technological evolutionary development. Top-down AI designers assume that human minds must furnish the most important goals to our AI systems as they develop. Certainly some such goal-assignment must occur, but it is becoming increasingly likely that this strategy has rapidly diminishing marginal returns. Evolutionary developmental computation (in both biological and technological systems) generally creates and discovers its own goals and encodes learned information in its own bottom-up, incremental, and context-dependent fashion, in a manner only partially accessible to our rational analysis. Ask yourself, for example, how much of your own mental learning has been due to inductive, trial-and-error internalization of experience, and how much was a deductive, architected, rationally-directed process. This topic, the self-organization of intelligence, is observed in all complex systems to the extent that each system’s physics allows, from molecules to minds.

In line with the new paradigm of evolutionary development of complex systems, we are learning that tomorrow’s most successful technological systems must be organic in nature. Self-organization emerges only through a process of cyclic development with limited evolution/variation within each cycle, a self-replicating development that becomes incrementally tuned for progressively greater self-assembly, self-repair, and self-reorganization, particularly at the lowest component levels. At the same time, progressive self-awareness (self-modelling) and general intelligence (environmental modelling) are emergent features of such systems.

Most of today’s technological systems are a long way from having these capacities. They are rigidly modular, and do not adapt to or interdepend with each other or their environment. They engage not in self-assembly, but are mostly externally constructed. In discussing proteins, Michael Denton reminds us of how far our technological systms have to go toward this ideal. Living molecular systems engage extensively in the features listed above. A proteins three dimensional shape is a result of a network of local and nonlocal physical interdependences (e.g., covalent, electrostatic, electrodynamic, steric, and solvent interactions). Both its assembly and its final form are a developmentally computed emergent feature of that interdependent network. A protein taken out of its interdependent milieu soon becomes nonfunctional, as its features are a convergent property of the interdependent system.

Today’s artificial neural networks, genetic algorithms, and evolutionary programs are promising examples of systems that demonstrate an already surprising degree of self-replication, self-assembly, self-repair, and self-reorganization, even at the component level. Implementing a hardware description language genotype, which in turn specifys a hardware-deployed neural net phenotype, and allowing this genotype-phenotype system to tune for ever more complex, modular, and interdependent neural net emergence is one future path likely to take us a lot further toward technological autonomy. At the same time, as Kurzweil has argued, advances in human brain scanning will allow us to instantiate ever more interdependent computational architectures directly into the technological substrate, architectures that the human mind will have less and less ability to model as we engage in the construction process. In this latter example, human beings are again acting as a decreasingly central part of the replication and variation loop for the continually improving technological substrate.

Collective or “swarm” computation is also a critical element of evolutionary development of complexity, and thus facilitating the emergence of systems we only partially understand, but collectively utilize (agents, distributed computation, biologically inspired computation), will be very important to achieving the emergences we desire. Linking physically-based self-replicating systems (SRS’s) to the emerging biologically inspired computational systems (neural networks, genetic algorithms, evolutionary systems) which are their current predecessors will be another important bottom up method, as first envisioned by John Von Neumann in the 1950′s.

Physical SRS’s, like today’s primitive self-replicating robots, provide an emerging body for the emerging mind of the coming machine intelligence, a way for it to learn, from the bottom up the myriad lessons of “common sense” interaction in the physical world (e.g., sensorimotor before instinctual before linguistic learning). As our simulation capacity, solid state physics, and fabrication systems allow us to develop ever more functional micro, meso and nano computational evolutionary hardware and evolutionary robotic SRS’s in coming decades (these will be functionally restricted versions of the “general assembler” goal in nanotechnology) we may come to view our technological systems simulation and fabrication capacity as their “DNA-guided protein synthesis”, their evolutionary hardware and software as their emerging “nervous system” and evolutionary robotics as the “body” of their emergent autonomous intelligence.

At best, we conscious humans may create selection pressures which reward for certain types of emergent complexity within the biologically inspired computation/SRS environment. At the same time, all our rational striving for a top down design and understanding of the AI we are now engaged in creating will remain an important (though ever decreasing) part of the process. Thus at this still-primitive stage of evolution of the coming autonomous technologic substrate a variety of differentiated, not-yet-convergent approaches to AI are to be expected. Comparing and contrasting the various paths available to us, and choosing carefully how to allocate our resources will be an essential part of humanity’s role as memetically driven catalysts of the coming transition.

In this spirit, let me now point out that on close inspection of the present state of AI research, one finds that there are very few investigators remaining who do not acknowledge the fundamental utility of evolution as a creative component in future AI systems. Those nonevolutionary, top-down AI approaches which still remain in vogue (whether classical symbolic or one of the many historical derivatives of this) are now few in number, and despite decades of iterative refinement, have consistently demonstrated only minor incremental improvements in performance and functional adaptation. To me, this is a strong indication that human-centric, human-envisioned design has reached a “saturation phase” in its attempt to add incremental complexity to technologic systems. We humans simply aren’t that smart, and the universe is showing us a much more powerful way to create complexity than by trying to develop or deduce it from logical first principles.

Thus we should not be surprised that on a human scale the handful of researchers working on systems to encode some kind of “general intelligence” in AI, after a surge of early and uneconomical attempts in the 1950′s to 1970′s, now pale in comparison to the 50,000 or so computer scientists who are investigating various forms of evolutionary computation. Over the last decade we have seen a growing number of real theoretical and commercial successes with genetic algorithms, genetic programming, evolutionary strategies, evolutionary programming, and other intrinsically chaotic and interdependent evolutionary computational approaches, even given their current primitive encapsulation of the critical evolutionary developmental aspects of genetic and neural computational systems and their currently severe hardware and software complexity limitations.

We may therefore expect that the numbers of those funded investigators who currently engage in this new evolutionary developmental paradigm will continue to swell exponentially in coming decades, as they are following what appears to be the most universally-permissive path to increasing adaptive computational complexity.

[via AccelerationWatch and HAL]

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

Robot Rides Bicycle

August 17th, 2015 | Posted by Sarah in PureNerdism - (0 Comments)

 
 

Did you know that it’s easier for a Robot to ride a bike that walk? That’s due to the repetitive motion of pedaling. It also making balancing much less challenging for the robot.

Masahiko Yamaguchi, Tamagawa seiki
Bipedal Bike Riding Robot

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

Dynamic Walking Robots in Shoes

August 17th, 2015 | Posted by Sarah in PureNerdism - (0 Comments)

 
 

Robots walk best when they get help from shoes. It helps stabilize the ground and makes balance easier.

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

 
 

To toss the ball, the quadrocopters accelerate rapidly outward to stretch the net tight between them and launch the ball up. Notice in the video that the quadrocopters are then pulled forcefully inward by the tension in the elastic net, and must rapidly stabilize in order to avoid a collision. Once recovered, the quadrotors cooperatively position the net below the ball in order to catch it.

Because they are coupled to each other by the net, the quadrocopters experience complex forces that push the vehicles to the limits of their dynamic capabilities. To exploit the full potential of the vehicles under these circumstances requires several novel algorithms, including:

1) an optimality-based real-time trajectory generation algorithm for the catching maneuver;

2) a time-varying trajectory following control strategy to manage the forces on the individual vehicles that are induced by the net; and

3) learning algorithms that compensate for model inaccuracies when aiming the ball.

By Robin Ritz, Mark W. Müller, Markus Hehn, and Raffaello D’Andrea.
IDSC, ETH Zürich, Switzerland
http://www.flyingmachinearena.org

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

Rise of the Humanoid Robots

August 14th, 2015 | Posted by Sarah in PureNerdism - (0 Comments)

 
 

The development of robots that could save lives is an unparalleled breakthrough, but what if they also could kill?

 
 

via Hal

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit

Motorola Moto G (3rd gen) Specs

August 14th, 2015 | Posted by Sarah in PureNerdism - (0 Comments)

 
 

NETWORK Technology
GSM / CDMA / HSPA / LTE
LAUNCH Announced 2015, July
Status Available. Released 2015, July
BODY Dimensions 142.1 x 72.4 x 11.6 mm (5.59 x 2.85 x 0.46 in)
Weight 155 g (5.47 oz)
SIM Micro-SIM
- IPX7 certified – water resistant up to 1 meter and 30 minutes
DISPLAY Type IPS LCD capacitive touchscreen, 16M colors
Size 5.0 inches (~67.0% screen-to-body ratio)
Resolution 720 x 1280 pixels (~294 ppi pixel density)
Multitouch Yes
Protection Corning Gorilla Glass 3
PLATFORM OS Android OS, v5.1.1 (Lollipop)
Chipset Qualcomm MSM8916 Snapdragon 410
CPU Quad-core 1.4 GHz Cortex-A53
GPU Adreno 306
MEMORY Card slot microSD, up to 32 GB
Internal 8 GB, 1 GB RAM
16 GB, 2 GB RAM
CAMERA Primary 13 MP, 4128 x 3096 pixels, autofocus, dual-LED (dual tone) flash
Features Geo-tagging, touch focus, face detection, panorama, auto-HDR
Video 1080p@30fps, HDR
Secondary 5 MP, auto-HDR
SOUND Alert types Vibration; MP3, WAV ringtones
Loudspeaker Yes
3.5mm jack Yes
COMMS WLAN Wi-Fi 802.11 b/g/n, hotspot
Bluetooth v4.0, A2DP, LE
GPS Yes, with A-GPS, GLONASS, Beidou
Radio To be confirmed
USB microUSB v2.0, USB Host
FEATURES Sensors Ambient light sensor, accelerometer (2), proximity sensor
Messaging SMS(threaded view), MMS, Email, Push Email, IM
Browser HTML
Java No
- Active noise cancellation with dedicated mic
- MP3/AAC+/WAV/Flac player
- MP4/H.264 player
- Photo/video editor
- Document viewer
BATTERY Non-removable Li-Ion 2470 mAh battery
Stand-by
Talk time
MISC Colors Black, White
Price group 4/10

Share on FacebookTweet about this on TwitterPin on PinterestShare on TumblrShare on Google+Email this to someoneBuffer this pageShare on LinkedInShare on StumbleUponDigg thisShare on Reddit